
Binary Strings

Are humans good at generating random numbers? In this activity we will compare the list of
run-lengths of binary strings generated by people and computers.

Run-length encoding is a simple method used to compress data in such a way that no information
is lost (lossless). The method works by substituting a string of consecutive identical characters (a
run) by the character and the length of the run. The list of run-lengths is the list of lengths without
the matching characters.

Example: For message: aaabbbbbcc
The encoded message is a3b5c2 and the list of run-lengths is given by [3,5,2].

Goals:

1. Write a function binString(n) that, given a positive integer n, returns a randomly generated
binary string of length n.

2. Write a function rle(s) that, given a binary string s, returns an np.array containing the
run-lengths of s.

3. Write a function binStringHist(s) that, given a binary string s, produces a histogram of
the run-lengths of s.

4. Apply the function binStringHist(s) to a randomly generated binary string of length 100
that you generate by hand.

5. Apply the function binStringHist(s) to a randomly generated binary string of length 100
generated using binString(n).

6. Compare the results.

7. Upload your strings to the following Google document: https://docs.google.com/document/
d/1dtBQ9O9PKjndnv0y_Trujg0t31Jv_VP0BEC8MzG_5nA/edit?usp=sharing

A solution:

import numpy as np

import matplotlib.pyplot as plt

1

https://docs.google.com/document/d/1dtBQ9O9PKjndnv0y_Trujg0t31Jv_VP0BEC8MzG_5nA/edit?usp=sharing
https://docs.google.com/document/d/1dtBQ9O9PKjndnv0y_Trujg0t31Jv_VP0BEC8MzG_5nA/edit?usp=sharing


def binString(n):

binS = np.random.randint(0,2,100)

s = ’’.join(map(str,binS))

return s

def rle(s):

current = s[0]

count = 0

runLength = []

for char in s:

if char == current:

count += 1

else:

runLength.append(count)

current = char

count = 1

return np.array(runLength)

def binStringHist(s):

rl = rle(s)

plt.hist(rl)

plt.show()

2


